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1. INTRODUCTION

The determination of positive linear forms on a linear space V of real
functions defined on a set E, everywhere or almost everywhere with respect
to negligible subsets, is a classical topic in analysis. Let us mention, for
instance, the moment problem with its extensive literature or the determina
tion of the duals of many interesting ordered Banach spaces V using the fact
that every positive form on V is continuous.

In such problems a natural trend is to try and identify positive linear forms
with Radon measures on some compact or locally compact space associated
with the given set E. This is often possible, especially when dealing with
algebras of functions: A good example is the classical moment problem. But
it may happen, even in the case of algebras, that a direct use of Radon
measures is no longer sufficient; in this case, new tools have to be introduced.
Two simple examples will show us the way:

(1) Let VI be the algebra of real polynomials p(x) on E = (0, oo(
vanishing at the point x = 0; the linear form Tlon VI: P -- p'(O) is positive,
and there exists no positive Radon measure p. on E such that TI(p) = p.(p)
for every p E VI' But if we define 15 by 15(x) = p(x)jx, we notice that 15 is
continuous on E, and that TI(p) = EO( 15), where EO is the valuation (or Dirac
measure) at O.

(2) Let V2 be the linear space of second degree real polynomials
p(x) = 00 + 0IX + 02X2 onE = [-00,00]. The linear form Ton V2 :p -- 02

is positive, and again there is no positive Radon measure p. on E such that
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T(p) = JL(p) for every p E V2 • But if we define p by p(x) = p(x)j(x2 + 1), we
notice that p is continuous on [- 00, 00) and that T2(p) = €oo( p).

In both cases, by using quotients we have been able to represent T1 and T2

in terms of Radon measures €o and €oo • In the first example, the measure was
supported by E itself; in the second we had to use a compactification of E.

We will show that one can systematize these ideas, and represent every
positive form on V in terms of quotients and Radon measures on some
compact space associated with E. More explicitly, we will associate with the
couple (E, V) a compact space in which, in some sense, the quotient of any
two continuous functions is continuous; such spaces will be called substonian,
and the linear forms associated with quotients will be called sub-measures.

These two notions will prove also very handy in studying extreme positive
forms.

Ultrafilters will be used to define substonian spaces associated with couples
(E, V); they will be used also to construct many examples of linear spaces V
of interest in the study of weakly complete convex cones.

The field of our investigation is rather broad. Indeed, for an ordered linear
space V (with V = V+ - V+) to be identified with a space of real functions
on a set E, it is necessary and sufficient that the set of positive linear forms on
V separates points of E. Of course, such a generality might be a handicap
rather than a reason for interest; however, although our setting is very
general, it poses many interesting questions, even for a classical analyst.

For instance, problems studied in the framework of the classical moment
problem, such as uniqueness of the Radon measure representing a given
linear form, find their equivalent in more general algebras, with the added
difficulty of new phenomena: Existence of points where every function in
the algebra is zero, or of points where the only values taken are 0 and ± 00.

Another problem is the following: We have represented positive forms in
terms of sub-measures on substonian spaces, which are large compact
spaces. Under what general circumstances, is it possible to replace these spaces
by smaller ones?

This work began in 1964 at the University of Washington, Seattle, during
useful discussions with R. Phelps. I obtained at that time some results
concerning extremal positive forms, and I had a vague notion of sub
measures. But only recently, thanks to substonian spaces, could I get a
cleaner theory.

II. SUBSTONIAN SPACES

The linear space of real valued functions on a discrete set E can be iden
tified with the space of continuous mappings of f3E (the compact space of



POSITIVE FORMS ON SPACES OF FUNCTIONS, I 327

ultrafilters on E) into iR = [- 00, 00], which are finite on the canonical image
of E into f3E. An analogous procedure can be applied to linear spaces of
functions defined on E outside of exceptional sets; but here the compact
space f3E must be replaced by another one. The essential feature that such
a compactification should retain to render possible the definition of sub
measures is the continuity of the quotient of two continuous functions; it is
this property that we use now to define substonian spaces.

Let us recall that a stonian space is a compact topological space E with the
following equivalent properties:

(1) For any pair 0 1 , O2 of disjoint open subsets of E, 01 and O2 are
disjoint.

(2) For any open subset 0 of E, any fE ~(O, iR) can be extended into
an JE ~(O, iR).

A closed subset of a stonian space is not always stonian. For instance f3N
is stonian, but not (f3N\N). This lack of heredity is often a hindrance in
applications; this will not happen with substonian spaces.

Notations 1. For any topological space E, ~(E) will denote the subset of
functions in ~(E, iR) which are infinite only on a nowhere dense (i.e., rare)
subset of E; it is not in general a linear space.

For anyf E ~(E), s(1) and S(I) will denote, respectively, the strict support
{x: f(x) =1= O} off, and its closed support s(f).

When E is locally compact, for any Radon measure /1- on E, S(/1-) will denote
also the closed support of /1-.

For any fE ~(E), withf =1= 0, s(f) is not empty and the open subset s'(f)
of s(f) on which f is finite is everywhere dense in s(f), so that, for any
g E ~(E), the restriction ofgffto s'(f) is defined and belongs to ~(s'(f)). As a
consequence, if this restriction can be extended to a function h E ~(S(f), R),
necessarily h E ~(S(f)). This leads us to

DEFINITION 2. We call substonian any compact space E such that ~(E)
is an algebra and admits sub-quotients in the sense that, for any f, g E ~(E),

gl.fbelongs to ~(S(f)).

In this definition, by "~(E) is an algebra" we mean that, for any f, g E ~(E),

(f + g) andfg which are defined and finite on an everywhere dense open set,
have an extension to E which belongs to ~(E).

We give now handy criteria for a space to be substonian:

THEOREM 3. If E is a compact space, the following properties are equiv
alent:

(I) E is substonian.
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(2) Any IE CC(E) has a sub-inverse (i.e., lilE f!2(S(f))).

(3) IE CC(E), in the ,!eighborhood 01any point, is either):: 0, or :s;; 0.

(4) IfWI' W2are disjoint open KG subsets olE, WI n W2 = 0.

(5) If AI' A2 are disjoint KG subsets 01 E, relatively open in Al U A2,
then Al n A; = 0.

(6) For any KG subset A 01 E, any IE CC(A, iR) can be extended into an
j E CC(A, iR).

(7) For any open KG subset W 01 E, anyI E CC(w, iR) can be extended into
anjE CC(w, iR).

Proof (1) =;- (2) because (2) is weaker than (1).
(2) => (3). Let IE CC(E) and a E E. If a rt S(f), I vanishes identically in

the neighborhood of a; if a ES(f) and I(a) =1= 0, (3) obviously holds.
Finally, if a E S(f) and I(a) = 0, then (1//) E f!2(S(f)) implies that
(1//)(a) = ±oo, hence I has a fixed sign on S(f) around a; and aslis zero
outside S(f), this is true also in E.

(3) => (4). If Wi (i = 1,2) is an open KG, one can construct by a well
known procedure an/; E CC(E, IR) which is > °on Wi and zero outside of Wi .
Let I = 11 - 12 ; if there exists an a E WI n W2 ,Idoes not have a fixed sign
around a, in contradiction with (3); hence (4).

(4) => (5). It is sufficient to prove the following result, valid in any
compact space E : If A, B are disjoint KG subsets of E, which are relatively
open in A u B, there exist disjoint open sets containing, respectively, A and
B, which are also KG .

Let A = Un An' B = Un Bn , with An and Bn compact, and remember
that, in E, any closed set has a base of open neighborhoods which ate KG .
Using the fact that A, B are both open and closed in Au B, we define recur
sively open KG neighborhoods (Xn , f3n in E of An , Bn , respectively:

(Xl and f31 are chosen so that (Xl n (B u f3I) and f31 n (A u (Xl) are empty.
Suppose now (x", flp are defined for p :s;; n, so that (A U (Xl ••• U (Xn) and
(B U f31 ... U f3n) are disjoint and closed in their union. Then (Xn+! , f3n+! are
taken as any open KG neighborhoods of An+! , Bn+! , respectively, such that
(Xn+! n (B U f31 .. , U f3n+I) and fJn+1 (1 (A U (Xl ••• U (Xn+I) are empty.

The open neighborhoods of A, B we were looking for, are, respectively,
WA = Un (Xn and WB = Un f3n .

(5) => (6). Let/E CC(A, iR), where A is a KG of E. We want to show that
for any a E A,jhas a single limit value on A at the point a. Suppose that/had
two different such limit values A, /L, and let k be any number strictly between
Aand /L. If Al = {x E A :/(x) < k} and A2 = {x E A :/(x) > k}, Al and A2
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are nonempty and are F" of A, and hence are K" sets, open in their union.
From (5) we conclude that AI' A2 are disjoint, in contradiction with the
hypothesis that a is in Al and in A2 •

(6) => (7) because (7) is weaker than (6).

(7) => (1). Let us prove for instance, assuming (7), thatf, g E ~(E) implies
fg E ~(E) : The set w = {x E E :f(x) and g(x) E~} is everywhere dense in E
and is a Ka because ~ itself is an F" of ~. The product fg is finite and con
tinuous in w, so that by (7), it has an extension to w = E which is in ~(E).

The proof is analogous for (f + g) and glf

COROLLARY 4. Every stonian space is substonian.

Indeed, the basic property of stonian spaces concerns arbitrary disjoint
open sets, and hence is stronger than 3.4.

COROLLARY 5. Every closed subset of a substonian space is substonian.

This is an obvious consequence of 3.3, 3.5, or 3.6. For example, (BN\N) is
not stonian but it is closed in fJN, and so substonian.

The following corollary shows that substonian spaces are far from being
metrizable.

COROLLARY 6. (1) The Alexandrov compactification N of N is not
substonian.

(2) A nonisolatedpoint ofa substonian space E is never a Gs ofE.

(3) Any metrizable closed subset F ofa substonian space E isfinite.

Proof (1) The function n ---+ (-l)n on N does not converge at infinity;
hence, by 3.7, N is not substonian.

(2) If a E E is a nonisolated point of E and a Gs of E, E contains a sub
space homeomorphic to N, hence by 6.1 and 5, E is not substonian.

(3) This is a direct consequence of 5 and 6.2 applied to F.

At this point we must remark, as was pointed out by Ajlani, that sub
stonian spaces are exactly, in the class ofF-spaces considered by Gillman and
Jerison, those which are compact. Indeed, although these authors were led to
F-spaces via the study of ideals, one of their characterizations of F-spaces
(see 14.25 in [1]) is the following:

"For any fE C(f(E), {x :f(x) > O} and {x :f(x) < O} are completely
separated."

For compact E, this condition is equivalent to our 3.3.
These authors have also considered, under the name of basically disconnec-
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ted spaces (Problems IH, 3N, 4N in [1]) another class of topological spaces,
which are substonian when they are compact; let us study them briefly.

It is well known that stonian spaces are exactly those compact spaces E for
which the ordered space ~(E, iR) is a complete lattice. Let us say now that a
lattice is a-complete when every denumerable subset of it has an upper and
a lower bound. Then:

THEOREM 7. Let E be a compact space.

(1) (~(E, iR) is a a-complete lattice) =- (For any KG open weE, w is
open).

(2) These conditions imply that E is substonian; the converse is false.

Proof (1) For 7.1, see Problem 3N of [1].

(2) The second condition in 7.1 obviously implies 3.4, hence that E is
substonian.

To show that the converse is false, it is sufficient to prove that (f3N\N),
which is substonian, does not satisfy conditions 7.1.

For technical reasons, we will replace N by N2. So, let E = f3(N2)\N2, and
let D = {the set of nontrivial ultrafilters supported by one of the sets
n X N C N2}. It is a KG open subset of E; so it is sufficient to prove that Q is
not open. If it were, as it contains no isolated point, it would be identical
with the set of nontrivial ultrafilters on a subset XC N2, where X contains
every n X N with the possible exception of a finite set. Hence, there would
exist a subset Y of X intersecting each n X N at exactly one point. As (13 Y\ Y)
is open in E and does not intersect D, we get a contradiction.

When E satisfies conditions 7.1, it is called basically disconnected.

Remark 8. For a compact space, "stonian" is stronger than "basically
disconnected", which is stronger than "substonian". Every compact space
which is stonian or basically disconnected is totally disconnected; but as
Ajlani has remarked, this does not hold for substonian spaces: Indeed, let X
be a locally compact space whose point at infinity has a denumerable base
(Vn ) of connected neighborhoods; if f3X is its Stone-Cech compactification,
the compact E = ({JX \ X) is substonian because X is a KG (see 14.27 in [1]);
moreover, in {JX, E = nn Vn, hence E is connected. In particular, this
proves that a substonian space cannot always be imbedded in a stonian space.

We will now construct some substonian spaces, which later will prove very
useful.

Let :T be a tribe (i.e., stable by denumerable unions and by complementa
tions) of subsets of a given set I. A :T-filter is any filter on I with a base in:T.

Let M(:T) be the linear space of real valued :T-measurable functions on I.
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Finally, let I(.'T) be the set of finitely additive measures fL on ,'!T, taking only
the values 0, 1, and satisfying fL(I) = 1.

For any fL E J(Y'), the set {X E Y' : fLeX) = I} is a maximal Y'-filter; and
reciprocally, to any maximal Y'-filter Olt, the function ofi on Y' defined by :
ofi(X) = 0 if X 1= Olt, and Oll(X) = 1 if X E Olt, is an element of l(ff); moreover,
dU = Olt and fl = fL.

The set l(ff) is obviously a closed subset of the compact space {O, l}'r,hence
leY') is compact for the topology of simple convergence. If we interpret I(Y')
as the set of maximal Y'-filter's by the bijection Olt ..-+ Oll, this compact space
has exactly the Stone topology; in this space, the subsets g(ff) = {elements
ofJ(ff) supported by X}, where X E Y', make up a base ofclopen sets ofJ(ff).
We sum up:

LEMMA 9. The compact space J(ff) of finitely additive probability
measures on ff with values 0, 1, is identifiable with the Stone space ofmaximal
Y'-filters on I, through the bijection Olt ..-+ qt.

It is clear (and well known) that, for any f E M(ff) and Olt E J(ff), f has a
limit j(0lt) relative to Olt, and that! E f0(J(ff)). The mapping f..-+ I is an
algebra homomorphism and as (f =1= 0) =>- (I =1= 0), this mapping is injective.
Let us verify that it is also surjective onto f0(I(ff)):

Any g E CC(I(ff)) with a finite range is of the form/; using uniform approxi
mation this can be extended to any g E CC(I(ff)) and finally, using truncated
functions gn = sup[inf( g, n), -n], this can be extended to any g E f0(I(ff)).
We sum up:

PROPOSITION 10. The mapping f..-+ I is an (ordered algebra)-isomorphism
of M(Y) onto f0(J(Y)).

We want to prove now that J(Y) is substonian.(l)

THEOREM 11. For any tribe ff on a set I, the space ley) of maximal Y
filters is basically disconnected, hence substonian.

Proof. All we have to verify is that, for any uniformly bounded increasing
sequence (fn) in M(ff), the sequence <In) has an upper bound in cc(1(.'T));
obviously this upper bound is exactly f, wheref = limn-loofn'

Problem 12. This result raises a question: Is it true, conversely, that
every basically disconnected compact space E can be identified with some
space l(/T)?

1 1(:7') is not always stonian: For instance; if I is not denumerable and .r is the tribe
generated by denumerable subsets of 1.
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Let us now try to extend 10 and 11 to tribes coupled with a class of negli
gible sets.

Let % be an ideal of .07 (i.e., a subset of .07, hereditary and stable by
finite unions), with % =1= .07; its elements will be called negligible sets.

A (.07, f)-filter is a .o7-filter ff such that (X Eff) and (X = Y mod %)
imply (Y Eff).

Let M(.o7, %) be the linear space of classes (mod %) of real valued .07
measurable functions, defined %-almost everywhere on I: It can be iden
tified with the quotient of M(.o7) by its linear subspace of functions which
are zero outside of some X E%.

Finally, let 1(.07, %) = {/L E1(.07) : 'v'X E%, /L(x) = O}; it is closed in 1(.07)
and is identical, through the mapping 'PI-* 1Jjj, to the set of maximal (.07, %)
filters. We sum up:

LEMMA 13. The space 1(.07, %) of maximal (.07, %)-.filters is a closed
subset of1(.07), and hence substonian.

For any fE M(.o7), let now/A/' be the restriction of/to 1(.07, f); obviously
(f = g mod %) => (/A/' = gA/') so that we get in fact a mapping of M(.o7, %)
into £»(1(.07, f), iR); but this mapping is not interesting in general because
it can fail to be injective, and also because/A/' can be identically 00. This is
the case, for instance, when 1= N, .07 = J7l(N), and % is the set of finite
subsets of N; for any sequence n--*!(n) such that limn->co!(n) = oo'/A/' is
identically 00 on 1(.07, %) = (flN\N).

Fortunately, this cannot happen when % is a a-ideal (i.e., stable by
denumerable unions):

THEOREM 14. When % is a a-ideal of the tribe .07, with % '.!= .07, the
mapping f --* /A/' is an (ordered algebra)-isomorphism of M(.o7, %) onto
£»(1(.07, f»~.

Proof Let!EM(.o7, f), let rp E M(.o7) be an element of the class f, and
let 011 E1(.07, f). For any clopen neighborhood X(.o7) of Ol/ in 1(.07), X is not
negligible, so there exists y E.o7, with Y rj % and Y C X, such that rp is
bounded on Y; hence/A/' is bounded on Y(.o7) n 1(.07, f). This proves that
/A/' E ~(l(.o7, f»~.

It follows immediately that the mapping f --* / A/' is an (ordered algebra)
homomorphism. It is injective because iff =1= 0, a similar reasoning proves
that on some y E.o7, with y rj %, rp has its range in a closed interval [u, v]
not containing zero; hence /A/' on y(.o7) has also its range in [u, v], and so
fA/' '.!= 0.

To prove its surjectivity is equivalent, by Proposition 10, to proving that
every g E£»+(1(.07, f»~ is the restriction of some element of ~+(l(.o7); this is
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obvious when g is bounded. Suppose now that g is arbitrary, and let
gn = inf( g, n); there exists a unique In E M(!T, .AI) with Unl.¥ = gn .

AslrJ = infCfu , p) wheneverp :( 9, one can define by recursion a sequence
(rPn), rPn E M(!T), where rPn is an element of the class In, such that
rPrJ = inf(rP9 ,p) whenp :( q.

The function rP = limn.... '" rPn is such that rPn = inf(rP, n) for each n, and so
the restriction of ;p to 1(!T, .AI) is exactly f

Remark 15. (1) The aim of what follows is the study of positive linear
forms on subspaces V of a given M(!T, .AI). When .AI is a a-ideal of !T,
Theorem 14 shows that our study is equivalent to the study of positive forms
on the image fl.,y of V in f»(I(!T, .AI».

But when.AI is not a a-ideal, we have to come back to fl and study positive
forms on this subspace of f»(I(!T» which are zero for every negligible element
10f17.

Instead of dealing only with spaces 1(!T, .AI) or1(!T), we will consider more
generally arbitrary substonian spaces: This will be both simpler and more
general.

(2) Although what follows concerns linear subspaces V C f»(E) whose
E is substonian, most of our examples will concern subspaces of some
M(!T, .AI); we shall not repeat everywhere that Theorem 14 establishes a
translation of these examples in terms of substonian spaces.
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